Program Review
Planning and Review Committee 2007-8

I. Program Reviewed: M.S. in Risk Control

Program Director: Dr. Brian Finder

PRC Consultants: Kimberly Zagorski and Petre Ghenciu

Purpose of the Review: To assess the quality of the M.S. in Risk Control program as part of the seven-year cycle required of all degree programs at UW-Stout.

Committee Findings: The committee recommends that this program continue to function as one of UW-Stout’s degree programs for the ongoing seven-year cycle, and that recommendations made by the committee be implemented.

Abstract: The M.S. in Risk Control is designed to prepare students to meet the management as well as technical-oriented risk control needs of business and industry.

The Master of Science in Risk Control started at Stout as the M.S. in Safety Program in 1974. The name change to “Risk Control” occurred in 1994 to more appropriately reflect the profession’s needs for graduates who must routinely promote the protection of various organizational assets (i.e., human, public, legal, facility, product, materials, currency, environmental, etc.) within an organization. The philosophy of risk control is to promote the integration of basic technical areas such as process design/engineering, standards/regulatory compliance, industrial hygiene and environmental regulations management into the daily practices/decisions of the entire strata of the organization. The program’s focus is to meet the professional and personal needs of its students through advisement, comprehensive risk control-oriented coursework and applied research.

Since its inception in 1974, the program has evolved to embrace this philosophy of combining theory, practice and experimentation to meet the progressively changing risk-based management techniques that are employed in business and industry. The six faculty that teach the core of required professional-oriented courses are continually involved with outside educational and business-related entities for the purpose of gleaning current technical as well as managerial knowledge for dissemination into the curriculum. The delivery of late afternoon/evening-based courses allows part-time individuals who work in the field to enhance themselves professionally. This delivery methodology not only serves to meet the needs of the student, but also provides a substantial opportunity for heightened student and instructor-based interaction as well as optimizes limited institutional resources.

The M.S. in Risk Control program requires associated students to complete a minimum of 39 credits of highly technical as well as managerial-based coursework. At least 24 credits must be completed in 700-level graduate student-only courses which demand that individuals possess critical thinking skills to learn as well as refine their abilities to work with high-level management individuals to promote change in organizational practices. Consequently, it is necessary for students to enter the program with a fundamental subset of science, organizational,
leadership and basic risk control/safety skills which are interwoven with a strong level of maturity, and thus enable them to analytically identify and tactfully promote the reduction/elimination of risks that are inherent to a company’s processes. In addition to the above requirements, every student must complete either a Plan A thesis or a Plan B field problem which demands that they identify, analyze and provide technical as well as managerial-based recommendations to solve a process deficiency that either possesses significant loss potential or is already creating moderate amount of loss (i.e., human, time, legal, facility, environmental, equipment, product, etc.).

Enrollment in this program has been steady over the past four years. Out of 33 graduates in the past three years, 17 have been employed immediately upon graduation, 11 have been employed within three months of graduation, and the remaining 5 were employed within six months of graduation.

III. Process Followed for Current Review

The PRC consultants met with the program director several times during the process to review the procedures and offer assistance. Data regarding several aspects of the program were collected from students, key instructors within and outside the department, and program advisory committee members through surveys. A total of 14 students responded to a PRC graduate-specific survey that was administered to 37 individuals. Of 22 Program Advisory Committee members who were surveyed, 12 individuals responded. The data were analyzed and returned to the program director and PRC members. The Program Director presented a summary of his report to the committee.

IV. Previous Review

The last PRC review of this program occurred in the 2001-02 academic year. The program was recommended for continuation. PRC also recommended that a status report be provided in two years regarding classroom climate concerns. The committee found in that status report the subsequent surveys of graduates and current students showed no evidence of continuing concerns which were expressed in the 2002 survey. The committee was satisfied with the status report and made no further recommendations.

Recommendation for the Dean and Chair: Continue to develop a state-of-the-art dedicated risk control laboratory.

Consultant’s Summation: There is a recommendation in the current review concerning this issue.

Recommendation for the Chair: Conduct a PRC follow-up survey of students in two years to determine if improvements are being made in the area of diversity awareness, including classroom climate and give a status report indicating findings.

Consultant’s Summation: The subsequent surveys of graduates and current students showed no evidence of continuing concerns which were expressed in the 2002 survey.
Recommendation for the Chair: Make every effort to maximize the number of qualified women and minorities in the applicant pool for the current faculty position.

Consultant’s Summation: The hiring committee made every effort to achieve this. During the process of recruiting lists of women and minorities from risk control/safety-based PhD programs were acquired and letters inviting them to apply for the position were sent to such individuals.

Recommendation for Program Director: Consider adding a required certification exam to the program.

Consultant’s Summation: The faculty have identified a basic certification exam.

Recommendation for Program Director: Investigate ABET accreditation.

Consultant’s Summation: The program faculty do not feel that that ABET accreditation will provide the necessary return on investment and therefore have chosen not to pursue this recommendation.

Recommendation for Program Director: Improve the recruitment of new students.

Consultant’s Summation: The program’s efforts to manage enrollment have shown positive results.

Recommendation for Program Director: Assess and minimize overlap between Risk Management in Loss Control I and II.

Consultant’s Summation: The overlap was eliminated.

V. Current Program Review

Program Strengths

1. An active, knowledgeable program director (student surveys, key instructor surveys, advisory committee)

The program director sends to current students as well as prospective students email-based correspondence to keep them appraised of programmatic requirements/opportunities. A list of alumni email addresses was updated and has been used to maintain active contact with the group. A formalized thesis/field problem advisor application process has been instituted to help align students with the appropriate advisor. The program’s website has been updated and additional plans are to include a streaming video of the program director to help prospective students better connect with the demands of the profession as well as nuances of the program.
2. Committed and knowledgeable faculty. (program director report, key instructor surveys, student surveys, advisory committee)

Four out of the six key faculty possess professional certifications which are highly regarded throughout the risk control/safety profession. The six key faculty have updated the core student competencies and there are plans to integrate such into the pre and post-program assessment tool which serves as the basis of the annual Assessment in the Major Report.

3. Involved advisory committee. (program director report, key instructor surveys, advisory committee)

The committee consists of faculty members who provide specialized technical expertise in areas of management, industrial hygiene, law, risk control, vocational rehabilitation, chemistry, and biology. Off-campus committee members include individuals who are practicing professionals in construction/health care/insurance/general manufacturing fields, serve as adjunct professors for the program, and/or who provide internships, field problem opportunities, and full time jobs to graduating students. The agendas for the Program Advisory Committee meetings have been modified to closely align with Stout’s advisory committee model.

4. Continuous improvement in lab facilities: (program director report)

One of the strengths of the M.S. in Risk Control program is its dedicated laboratory where students can practice with available equipment/instrumentation as well as convene to complete academic-oriented assignments. This laboratory is equipped with four computer workstations, a fume hood, a wide range of personal protective equipment, various safety/fire protection-related devices, and an extensive amount of risk control/safety electronic/print matter resources.

5. Flexible course delivery to accommodate full-time students and those returning to the workforce on a part-time basis. (program director report, key instructor surveys, advisory committee)

The delivery of late afternoon/evening-based courses allows part-time individuals who work in the field to enhance themselves professionally. This delivery methodology not only serves to meet the needs of the student, but also provides a substantial opportunity for heightened student and instructor-based interaction as well as optimizes limited institutional resources.

6. Stabilization of program enrollment. (program director report, advisory committee)

The previous PRC report noted that the enrolment in the program had declined from 1996 to 2001. The latest data shows that the current program enrollment is steady and there are strong indications of an upward trend.
Program Opportunities for Improvement

1. **Facilities:** While actively pursuing funding, some lab equipment needs upgrading. (program director report, student surveys, key instructor surveys)

2. **Curriculum:** Assess the viability of additional concentrations reflective of real-world developments, including industrial hygiene and safety. (program director report, student surveys, key instructor surveys, advisory committee)

3. **Instruction:** Students expressed strong concern over instruction and delivery methods of industrial hygiene courses. Oversight is needed to identify and correct issues with course structure/delivery methods. (student surveys, program director report)

4. **Marketing:** Increase the visibility of the program to prospective students. (program director report, key instructor surveys, advisory committee)

Recommendations

Recommendations for the Department Chair – Department of Operations, Construction and Management

1. Focus on laboratory facilities that will not be upgraded as a result of Jarvis Hall Science Wing addition. Work towards acquiring funding to modify facilities not being upgraded to be comparable with peer programs.

2. Pursue funding sources to allow program members the opportunity to take the Council on Certification of Health, Environmental and Safety Technologists (CCHEST) exam; additional certification may also make program more attractive to perspective applicants.

Recommendation for the Department Chair - Chemistry

1. Share survey results regarding instructor and student concerns with relevant industrial hygiene-based department member(s) and press for the resolution of identified concerns.

2. Identify and implement activities/practices addressing student concerns pertaining to course structure/delivery methods regarding industrial hygiene courses.

Recommendations for the Program Director

1. Share survey results regarding instructor and student concerns about relevant industrial-hygiene based department members to the Chemistry Department Chair. Support the Chemistry Department Chair’s efforts to resolve these concerns.
2. Assess the viability of industrial hygiene concentration within the program. Explore alternative areas of concentration to meet demands of prospective employers, such as security.

3. Explore potential of offsite and online delivery to reach non-traditional off campus students.

4. Pursue funding sources to allow program members the opportunity to take the CCHEST exam (additional certification may also make program more attractive to perspective applicants).

Recommendations for the Dean – College of Technology, Engineering, and Management

1. Focus on laboratory facilities that will not be upgraded as a result of Jarvis Hall Science Wing addition. Work towards acquiring funding to modify facilities not being upgraded to be comparable with peer programs.

2. Pursue funding sources to allow program members the opportunity to take the Council on Certification of Health, Environmental and Safety Technologists (CCHEST) exam; additional certification may also make program more attractive to perspective applicants.

Recommendation for the Dean – College of Arts and Sciences

1. Support the efforts of the program director as well as Chair of the Chemistry Department to resolve identified concerns pertaining to industrial hygiene course structure/delivery methods.